36 research outputs found

    Photovoltaic restoration of sight with high visual acuity

    Get PDF
    Patients with retinal degeneration lose sight due to the gradual demise of photoreceptors. Electrical stimulation of surviving retinal neurons provides an alternative route for the delivery of visual information. We demonstrate that subretinal implants with 70-μm-wide photovoltaic pixels provide highly localized stimulation of retinal neurons in rats. The electrical receptive fields recorded in retinal ganglion cells were similar in size to the natural visual receptive fields. Similarly to normal vision, the retinal response to prosthetic stimulation exhibited flicker fusion at high frequencies, adaptation to static images and nonlinear spatial summation. In rats with retinal degeneration, these photovoltaic arrays elicited retinal responses with a spatial resolution of 64 ± 11 μm, corresponding to half of the normal visual acuity in healthy rats. The ease of implantation of these wireless and modular arrays, combined with their high resolution, opens the door to the functional restoration of sight in patients blinded by retinal degeneration

    Density, proportion, and dendritic coverage of retinal ganglion cells of the common marmoset (Callithrix jacchus jacchus)

    No full text
    We performed a quantitative analysis of M and P cell mosaics of the common-marmoset retina. Ganglion cells were labeled retrogradely from optic nerve deposits of Biocytin. The labeling was visualized using horseradish peroxidase (HRP) histochemistry and 3-3'diaminobenzidine as chromogen. M and P cells were morphologically similar to those found in Old- and New-World primates. Measurements were performed on well-stained cells from 4 retinas of different animals. We analyzed separate mosaics for inner and outer M and P cells at increasing distances from the fovea (2.5-9 mm of eccentricity) to estimate cell density, proportion, and dendritic coverage. M cell density decreased towards the retinal periphery in all quadrants. M cell density was higher in the nasal quadrant than in other retinal regions at similar eccentricities, reaching about 740 cells/mm² at 2.5 mm of temporal eccentricity, and representing 8-14% of all ganglion cells. P cell density increased from peripheral to more central regions, reaching about 5540 cells/mm² at 2.5 mm of temporal eccentricity. P cells represented a smaller proportion of all ganglion cells in the nasal quadrant than in other quadrants, and their numbers increased towards central retinal regions. The M cell coverage factor ranged from 5 to 12 and the P cell coverage factor ranged from 1 to 3 in the nasal quadrant and from 5 to 12 in the other quadrants. These results show that central and peripheral retinal regions differ in terms of cell class proportions and dendritic coverage, and their properties do not result from simply scaling down cell density. Therefore, differences in functional properties between central and peripheral vision should take these distinct regional retinal characteristics into account

    Centre and surround responses of marmoset lateral geniculate neurones at different temporal frequencies

    No full text
    The responses of marmoset lateral geniculate neurones to stimuli that were composed of a sinusoidally modulating centre stimulus and a surround that was modulated in counterphase were measured. The size of the stimulus centre was varied. These measurements were repeated at different temporal frequencies between 1 and 30 Hz. The response amplitudes and phases depended in a characteristic manner on the stimulus centre size. The response behaviour could be modelled by assuming Gaussian responsivity profiles of the cells' receptive field (RF) centres and surrounds and a phase delay in the RF surround responses, relative to the centre, enabling the description of RF centre and surround response characteristics. We found that the RF centre-to-surround phase difference increased linearly with increasing temporal frequency, indicating a constant delay difference of about 4.5 to 6 ms. A linear model, including low-pass filters, a lead lag stage and a delay, was used to describe the mean RF centre and surround responses. The separate RF centre and surround responses were less band pass than the full receptive field responses of the cells. The linear model provided less satisfactory fits to M-cell responses than to those of P-cells, indicating additional nonlinearities
    corecore